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Abstract. In this paper we prove a sufficient condition that a strong local minimizer of a bounded 
quadratic program is the unique global minimizer. This sufficient condition can be verified computa- 
tionally by solving a linear and a convex quadratic program and can be used as a quality test for local 
minimizers found by standard indefinite quadratic programming routines. 
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1. Introduction 

In this paper we discuss the problem 

1 
global rain h(x) := y + crx + -~ xrHx 

subject to x~C:={x~R"lb<~Ax<~6), (1) 
m × n  where H E R  "x" is symmetric, c ~ R ,  y E R ,  A ~  , and b , / ~ E R  m. For 

simplicity of exposition we only discuss the case of finite b, b. It is not difficult to 
extend the method to the case of one-sided bounds where one or several entries 
of b or /~ are +--~. As long as C remains bounded, this only involves trivial 
changes. 

When H is positive semidefinite and C is nonempty then (1) is a convex 
problem and standard quadratic programming methods yield a local optimizer 
which is global by convexity. On the other hand, if H is indefinite then, often, 
many local optima exist, and the selection of the global optimum has a combina- 
torial aspect. In the extreme case where H is negative definite, every vertex of C 
is a local optimizer, and the combinatorial structure is obvious. This shows that 
global quadratic optimization is a computationally hard problem (see also Murty 
& Kabadi [4]). Nevertheless, problems with several hundred variables have been 
successfully solved when the number of negative eigenvalues of H were not too 
large, see Pardalos & Rosen [5]. Other references for global constrained optimi- 
zation are Fujii et al. [1], Hansen & Sengupta [2], and Horst & Tuy [3]. 

In the present paper we show that there is a constructive measure of noncon- 
vexity such that for "nearly convex" problems, a local optimizer can be recog- 
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nized to be a global optimizer. We expect the result to be of practical significance 
(see Section 4); however, in this paper, only the theoretical aspects will be 
analyzed. 

2. Auxiliary Results 

Basic to our results is the following bound for a positive semidefinite quadratic 
form on the cone of nonnegative vectors. 

PROPOSITION 1. Let G @ ~ × n  be symmetric and positive semidefinite, and let 

u, v @ ~ be nonnegative vectors satisfying uiv i >~ Gii for  i = 1 , . . . ,  n. Then 

0 ~ x ~ ~ ~ xrGx  <~ (urx ) (vrx ) .  (2) 

Proof. By continuity it suffices to treat the case u > 0. For fixed e > 0 we 
consider the optimization problem 

global min evrx - x rGx  

subject to x~>0,  u ~ x = e .  (3) 

(3) is bounded and concave, hence attains its global minimum at a vertex. But the 
vertices are x = uZlee  (i), and the corresponding objective function values are 

-2  u i (uiv i - Gii)e 2 ~ O. Hence the global minimum of (3) is nonnegative, and since 
s > 0 was arbitrary, (2) follows. [] 

Although not needed in the sequel, let us mention the following special case, 
obtained by minimizing the upper bound in (2) subject to the constraints 

UiV i ~ Gii for i = 1 , . . . ,  n. 

C O R O L L A R Y  2. Let G ~ ~n×n be symmetric and positive semidefinite. Then 

O<~XENn~xrax<~ ~ X  i • [] 

Now let x be a local minimizer of (1), let 

g = c + 1-Ix (4) 

denote the gradient of the objective function of x, and let y @ ~ m  be the vector of 
Lagrange multipliers. Then the first order optimality conditions give 

gr  = yrA , (5) 

inf{yi(b - Ax)  i , y i ( 6 -  Ax)~} = 0 (i = 1 . . . . .  m ) .  (6) 

Let  B = {i ] Y~ ~ 0}, let YB be the vector y restricted to the rows indexed by B, and 
let A s be the matrix A restricted to the rows indexed by B. We now make the first 
nondegeneracy assumption that A s has rank I•1 and 
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b. i < (Ax) i  < 6~ ¢:=) i f~ B . (6a) 

CASE 1. [ B I = n (i.e., the optimum is in a vertex of C). In particular, this is 
always the case if H is negative semidefinite, or if A = I (simple bounds) and 
/-/, ~< 0 for i = 1 , . . . ,  n. In this case A8 is nonsingular. By means of a L D L  r 

factorization or a modified Cholesky factorization of H '  = A ~ r H A ~  1 + y I  we can 
write H ' =  N N  r -  G with a positive semidefinite matrix G; then the matrix 
H + ArnGA B is positive definite. (If H is positive semidefinite we can of course 

choose G = 0.) 

CASE 2. I B I < n. In this case, by permuting the columns of A (and the rows of 
x) if necessary, we may assume that AB =(A1A2)  with a nonsingular I B I x  
I B [ - matrix A 1. Then the columns of the matrix 

Z=(-Zi 1A2) 
form a basis of the null space A B, and with 

we have A ~ Z  = 0, A B P  = I, and (Z P) is a nonsingular n x n-matrix. (A similar 
decomposition can be obtained from a QR-factorization of AB. ) In view of (6a), 
the second order optimality conditions imply that the reduced Hessian Z r H Z  is 
positive semidefinite at the local optimizer. We now make the second nondege- 
neracy assumption that (in case 2) the reduced Hessian is nonsingular, and hence 
positive definite. In this case, we have a Cholesky factorization Z r H Z  = L L  r with 
nonsingular L. Now define 

M = ( P r H Z ) L - r ,  

H '  = P r H P -  M M  r . 

By means of a L D L  r decomposition or a modified Cholesky decomposition of H '  

we can write 

H '  = N N  r -  G 

with a positive semidefinite symmetric matrix G; moreover, we can choose G = 0 
when H '  is positive semidefinite. Now 

( Z  P ) r ( H  + ArBGAB)(Z P)  = p r  H ( Z  P)  + G(O I)  

= \Pr I - I Z  P r H P  + G = \ M L  r M M  r + N N  r 

0 L r 
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is positive semidefinite, and since ( Z P )  is nonsingular, H +  A ~ G A  8 is also 
positive semidefinite. Thus we have proved constructively: 

PROPOSITION 3. Let x be a strong local minimizer o f  (1), i.e., (6a) holds, A e 
has rank I B I and either [ B I = n or the reduced Hessian at x is positive definite. 
Then there is a symmetric [ B I × [ B [-matrix G such that both G and H + A r G A  B 
are positive semidefinite. [] 

REMARKS. 1. We can choose G = 0 precisely when H is positive semidefinite, 
i.e., when the problem (1) is convex. 

2. Verifying local optimality in the presence of degeneracy or a singular 
reduced Hessian is NP-hard [6], and verifying global optimality in this situation 
seems very involved. On the other hand, strong local minimizers 'can be recog- 
nized easily by verifying the assumptions of the proposition, and we can hope for 
detecting global optimality in this case, too. 

3. It is conceivable that the proposition holds for arbitrary local minimizers. If 
so, the strongness assumption in the next section could be dropped since the 
results there only depend on the existence of G and not directly on strong 
optimality. 

4. Note that any optimization problem with a local optimizer at x can be 
perturbed by suitable arbitrarily small perturbations to produce a problem with a 
strong local optimizer at x. 

3. Main Results 

THEOREM 4. Let x be a strong local minimizer o f  (1). With the notation 
introduced above, and G chosen as in Proposition 3, let a 8 be the vector indexed by 
B such that 

a i ---- G i i / ( 2 Y i )  ( i E  B ) .  

Then, for  all ~ E C, 

gr(~_ ~) >1 o, (7) 

h(] )  - h(x) >! gT"(~_ x) . (1 r ~ . - aBAB(x  -- x)) (8) 

In particular, i f  the number 

T ~ a := m a x { a n A B ( x  - x ) [ £ E  C} (9) 

satisfies a <~ 1 then x is a global minimizer o f  (1), and if  a < 1 then x is the unique 
global minimizer. 

Proof. Note first that for any ~ E C we have 

1 
h(~)  = h(x) + g r ( £ _  x) + ~ ( .~ -  x ) r H ( £ -  x) , (10) 
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and g r ( £ _  x) = y r s A B ( £ -  x) by (5). Writing 

E = Diag(yB) ,  e = ( 1  . . . .  ,1)  r z = ~ Z A s ( £ - x )  

we can rephrase this as 

(11) 

gr ( j?_  x) = e r z .  (12) 

= y~(A.~-  Ax) t  >- inf{y~(b - A x ) i  , yi (b  - Ax) ,}  = 0 by (6), hence z ~> 0, 

C O R O L L A R Y  5. In the above setting, any £ ~ C with h(£)  ~ h(x), £ ~ x satisfies 
the inequality 

T a ~ A B ( x - -  x ) ~  1. (16) 
[] 

EXAMPLE.  In the bound constrained case in 2 dimensions we have w.l.o.g. 

A = ( 1 0  01), b = ( _ ~ l ) , ~ / ~ = ( ~ ) -  

N o w  z i 

and z = 0 only if A B ( £ -  x) = 0. In particular, 

g r ( £ _  x) >10, with equality iff A 8 ( £ -  x) = 0.  (13) 

Since G and H 0 := H + ArBGA B are positive semidefinite we have 

1 
0 ( ;  - - x )  

= 1 ( .~_ x)r (  H + A ~ G A ~ ) ( . ~ -  x) 
2 

1 z r  2_  1 (~o)h(:~) - h(x) - gr(.~ _ x) + ~ G ~-1 z (14) 

<~ h(.~) - h(x) - g r ( £ _  x) + ( e r z ) ( v r z ) / 2  
(*) 

(~)h(:() - h(x) - g r ( £ _  x)(1 - v r z / 2 )  . 

The step (*) follows from Proposition 1, where o i = (E-2 G E-1)i~ = Gi~/yZ~ = 2ai/ 
y~. Now 

UiZ i = 2 a i ( A B ( . ~ -  x ) ) i  , 

hence vrz = 2 a ~ A R ( ; - x ) ,  and the inequality (14) becomes (8). Using (9) we 
get vrz ~<2a, and (14) implies 

1 
0<~ ~ ( ; -  x ) rHo ( ;  - x) <<- h ( ; )  - h(x) - (1 - a)g  r ( ;  - x ) .  (15) 

Finally, if a ~< 1 then (8) gives h ( £ ) ~  h(x) for all £ E C; hence x is a global 
minimizer. And if a < 1 and £ is an arbitrary global minimizer then (8) gives 
h(£) = h(x) and gT(~?_ x) = 0, so that A B ( £ -  x) = 0 by (14). If I B I = n this 
implies £ = x. And if I B I < n then this implies £ -  x = Z w  for some vector w. But 
now (10) implies w r Z r H Z w  = 0, and since the reduced Hessian is definite, w = 0. 
Therefore J? = x, so that x is the unique global minimizer. [] 
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We consider two particular cases (not exhausting all possibilities, but fairly 

general)  where the global optimizer is verified. 

Case 1: H n < 0 ,  Ha2 < I H ~ 2  I+1c2  I- In this case h(x) is concave in x 1 and 
convex in x2, and one easily sees that the only candidates for a local minimizer 
have  

x 1=--+1,  x 2 = ( - c  2-T-H12)/H22, 

with object ive function value 

1 
h ( x )  ~- 3' ~ C 1 -I- ~ n i l  - (c 2 + n 1 2 ) 2 / 2 H 2 2  . 

Gradien t  and Lagrange multiplier vector  have the common  value 

Y l = g l = P - T - q ,  Y 2 = p 2 = 0  
where  

p = C 1 - -  c 2 H 1 2 / n 2 2 ,  q = H 2 2 / H 2 2  - H l l  ( > 0 ) .  

Since B = {1}, A 8 = (1 0), the reduced Hessian H22 is definite. Thus we have a 
strong local minimizer when ay~  > 0, i.e. 

q-T-p > O .  

Since the object ive function value can be written as 3' - q /2  - c~/2H22 +- p ,  the 
global minimizer is obta ined for the sign which makes  ~-p nonnegative.  For  the 

choice G = (q)  the matrix H + ArBGA8 is easily seen to be positive semidefinite. 
Hence  a 1 = q / 2 ( p  -T- q). Now (9) yields 

a = max{a ,  Q71 * 1)l ; , ,  ;2 ~ [-1,  1]} 
= l a l  l-~ al = q / ( q  Y p) . 

For  the global minimizer,  a p / >  0, hence a < 1; i .e.,  the criterion of the theorem 
recognizes global optimality. 

Case 2 : H l 1  ~ 0, H22 < 0. In this case, the global minimizer is at a vertex,  and 
w.l .o .g. ,  we assume it to be  at x~ = x 2 = - 1 .  Compar ison of the objective function 
at the vertices shows 

C 1 >! H12 , C 2 I> H12 , c 1 + c 2 I> 0 .  

Now B = { 1 , 2 } ,  A B = A = I ,  and G = (  q 0 °)  with the above q makes  H +  
A J G A  8 positive semidefinite. We find 

Yl = gl = cl - / / 1 1  - H12(~>0), Y2 = c2 - / / 2 2  - H12(~>0), 

a I = q / 2 y  I >1 0 ,  a 2 = O. 

NOW 

q ~ < - H t l  ~<Yl, hence a 1 ~< 1/2  and 

gr = m a x { a 1 ( ;  1 + 1) + a2(.~" 2 + 1)1.171, J72 ~ [--1, 1]} 

= max{0, 2al} ~< 1.  
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Thus the global optimizer is again recognized. 

REMARKS.  1. The number a in (9) can be viewed as a measure ofnonconvexi ty  
since a = 0 if G = 0, i.e., if H is positive semidefinite. In particular, Theorem 4 
proves global optimality of an optimizer of any "nearly convex" quadratic 
program. It is easy to see from (1) and (9) that 

1 
a~<[a  n l r ( / ~ - b ) ~ = ~  ~ a iGu / l y i l ,  d i = b i - b i .  

Thus a local optimizer is global if the multiplicrs Yi are absolutely large compared 
with the width di of the i-th constraint weighted by the convexity correction G, .  
Note that multipliers corresponding to equality constraints d i = 0 may be small (or 
even zero) without affecting the magnitude of a. 

2. Inequality (16) can be regarded as a cutting plane which eliminates a part of 
the feasible region containing the local optimizer. 

We end with showing how to obtain a lower bound for the global minimum 
min{h(£) 1£@ C} in case that the sufficient condition of Theorem 4 is not 
satisfied. The idea is to construct an underestimating convex quadratic objective 
function. 

PROPOSITION 6. Suppose that 

T N 

a := m a x { a ,  A B ( x -  x) [£@ C} > 1. (17) 

Let H o = H + A ~ G A  B and let h o be the minimum of  the convex quadratic program 

1 6rHo6 minimize h(x) + (1 - a)g16 + 

subject to b_ - A x  <~ A6  <<- 6 - A x .  (18) 

Then h(£)  >! h o for  all £ ~ C. 
Proof. Clearly, /~ = £ -  x satisfies the constraints of (18) for every £ ~ C. The 

inequality h(£)/> h(x) + (1 - a)gr6  + ½6rH0 6/> h o now follows from (15) and 
the definition of h 0. [] 

4. Discussion 

The sufficient condition for global optimality given above can be used in two 
ways: 

Either as a supplement to an indefinite quadratic programming method to 
check whether the local optimizer found is global; in this case the test either yields 
the information (I) "optimizer global" or (II) "optimizer possibly not global". 

Or as a method to provide cutting planes which enhance the search for further 
local optima in the ambiguous case (II). In this case the test can be incorporated 
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into an algorithm which solves (1) by a sequence of local quadratic optimization 
problems; branch and bound techniques can be used since the method proposed 
yields also lower bounds on the objective function. 

To use Theorem 4 and Proposition 6 (e.g. in a branch and bound algorithm) 
one has to solve a linear program to find a and, if a > 1, a convex quadratic 
program to find h 0. The values of a and h 0 are useful indicators for the assessment 
of "how optimal" the local optimizer ~ is. It may also happen that the optimizer 
of (17) or (18) already has h(aT) < h(x); in this case £ can be used as the starting 
point for a new local optimization leading to a better local optimum for (1). 

By repeating the construction for the new quadratic program we can systemati- 
cally reduce the size of the feasible region. Together with the methods of Pardalos 
& Rosen [5], this appears to be a fruitful approach which will be explored in a 
separate paper. 
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